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Abstract
Sequence mining is one of the fundamental data mining

tasks. In this paper we present a novel approach called
PRISM, for mining frequent sequences. PRISM utilizes a
vertical approach for enumeration and support counting,
based on the novel notion of prime block encoding, which in
turn is based on prime factorization theory. Via an extensive
evaluation on both synthetic and real datasets, we show that
PRISM outperforms popular sequence mining methods like
SPADE [10], PrefixSpan [6] and SPAM [2], by an order of
magnitude or more.

1 Introduction
Many real world applications, such as in bioinformatics,

web mining, text mining and so on, have to deal with se-
quential/temporal data. Sequence mining helps to discover
frequent sequential patterns across time or positions in a
given data set. Mining frequent sequences is one of the
basic exploratory mining tasks, and has attracted a lot of
attention [1, 2, 4–6, 9, 10].
Problem Definition: The problem of mining sequential
patterns can be stated as follows: Let I = {i1, i2, · · · , im}
be a set of m distinct attributes, also called items. An item-
set is a non-empty unordered collection of items (without
loss of generality, we assume that items of an itemset are
sorted in increasing order). A sequence is an ordered list of
itemsets. An itemset i is denoted as (i1i2 · · · ik), where ij
is an item. An itemset with k items is called a k-itemset.
A sequence S is denoted as (s1 → s2 → · · · → sq),
where each element sj is an itemset. The number of item-
sets in the sequence gives its size (q), and the total number
of items in the sequence gives its length (k =

∑
j |sj |). A

sequence of length k is also called a k-sequence. For ex-
ample, (b → ac) is a 3-sequence of size 2. A sequence
S = (s1 → · · · → sn) is a subsequence of (or is contained
in) another sequence R = (r1 → · · · → rm), denoted as
S ⊆ R, if there exist integers i1 < i2 < · · · < in such that
sj ⊆ rij

for all sj . For example the sequence (b → ac) is
a subsequence of (ab → e → acd), but (ab → e) is not a
subsequence of (abe), and vice versa.

Given a database D of sequences, each having a unique
sequence identifier, and given some sequence S = (s1 →
· · · → sn), the absolute support of S in D is defined as
the total number of sequences in D that contain S, given
as sup(S,D) = |{Si ∈ D|S ⊆ Si}|. The relative sup-
port of S is given as the fraction of database sequences

that contain S. We use absolute and relative supports in-
terchangeably. Given a user-specified threshold called the
minimum support (denoted minsup), we say that a sequence
is frequent if occurs more than minsup times. A frequent
sequence is maximal if it is not a subsequence of any other
frequent sequence. A frequent sequence is closed if it is not
a subsequence of any other frequent sequence with the same
support. Given a database D of sequences and minsup, the
problem of mining sequential patterns is to find all frequent
sequences in the database.
Related Work: The problem of mining sequential patterns
was introduced in [1]. Many other approaches have fol-
lowed since then [2, 4–10]. Sequence mining is essentially
an enumeration problem over the sub-sequence partial order
looking for those sequences that are frequent. The search
can be performed in a breadth-first or depth-first manner,
starting with more general (shorter) sequences and extend-
ing them towards more specific (longer) ones. The existing
methods essentially differ in the data structures used to “in-
dex” the database to facilitate fast enumeration. The exist-
ing methods utilize three main approaches to sequence min-
ing: horizontal [1, 5, 7], vertical [2, 4, 10] and projection-
based [6, 9].
Our Contributions: In this paper we present a novel ap-
proach called PRISM (which stands for the bold letters
in: PRIme-Encoding Based Sequence Mining) for min-
ing frequent sequences. PRISM utilizes a vertical approach
for enumeration and support counting, based on the novel
notion of prime block encoding, which in turn is based
on prime factorization theory. Via an extensive evalu-
ation on both synthetic and real datasets, we show that
PRISM outperforms popular sequence mining methods like
SPADE [10], PrefixSpan [6] and SPAM [2], by an order of
magnitude or more.

2 Preliminary Concepts
Prime Factors & Generators: An integer p is a prime in-
teger if p > 1 and the only positive divisors of p are 1
and p. Every positive integer n is either 1 or can be ex-
pressed as a product of prime integers, and this factoriza-
tion is unique except for the order of the factors [3]. Let
p1, p2, · · · , pr be the distinct prime factors of n, arranged
in order, so that p1 < p2 < · · · < pr. All repeated fac-
tors can be collected together and expressed using expo-
nents, so that n = pm1

1 pm2
2 · · · pmr

r , where each mi is a
positive integer, called the multiplicity of pi, and this factor-



ization of n is called the standard form of n. For example,
n = 31752 = 23 · 34 · 72.

Given two integers a =
∏ra

i=1 pmia
ia and b =

∏rb

i=1 pmib

ib
in their standard forms, the greatest common divisor of
the two numbers is given as gcd(a, b) =

∏
i pmi

i , where
pi = pja = pkb is a factor common to both a and b, and
mi = min(mja,mkb), with 1 ≤ j ≤ ra, 1 ≤ k ≤ rb.
For example, if a = 7056 = 24 · 32 · 72 and b = 18900 =
22 · 33 · 52 · 7, then gcd(a, b) = 22 · 32 · 7 = 252.

For our purposes, we are particularly interested in
square-free integers n, defined as integers, whose prime fac-
tors pi all have multiplicity mi = 1 (note: the name square-
free suggests that no multiplicity is 2 or more, i.e., the num-
ber does not contain a square of any factor). Given a set G,
let P (G) denote the set of all subsets of G. If we assume
that G is ordered and indexed by the set {1, 2, · · · , |G|},
then any subset S ∈ P (G) can be represented as a |G|-
length bit-vector (or binary vector), denoted SB, whose i-
th bit (from left) is 1 if the i-th element of G is in S, or
else the i-th bit is 0. For example, if G = {2, 3, 5, 7}, and
S = {2, 5}, then SB = 1010.

Given a set S ∈ P (G), we denote by ⊗S, the value
obtained by applying the multiplication operator ⊗ to all
members of S, i.e., ⊗S = s1 · s2 · . . . · s|S|, with si ∈ S. If
S = ∅, define ⊗S = 1. Let ⊗P (G) = {⊗S : S ∈ P (G)}
be the set obtained by applying the multiplication operator
on all sets in P (G). In this case we also say that G is a
generator of ⊗P (G) under the multiplication operator.

We say that a set G is a square-free generator if each
X ∈ ⊗P (G) is square-free. In case a generator G consists
of only prime integers, we call it a prime generator. Recall
that a semi-group is a set that is closed under an associative
binary operator ⊗. We say that a set P is a square-free semi-
group iff for all X,Y ∈ P , if Z = X ⊗ Y is square-free,
then Z ∈ P .

Theorem 2.1 A set P is a square-free semi-group with op-
erator ⊗ iff it has a square-free prime generator G. In other
words, P is a square-free semi-group iff P = ⊗P (G).

As an example, let G = {2, 3, 5, 7} be the set
of the first four prime numbers. Then ⊗P (G) =
{1, 2, 3, 5, 7, 6, 10, 14, 15, 21, 35, 30, 42, 70, 105, 210}. It is
easy to see that G is a square-free generator of ⊗P (G),
which in turn is a square-free semi-group, since the prod-
uct of any two of its elements that is square-free is already
in the set.

1111 (210)

1110 (30) 1101 (42) 1011 (70) 0111 (105)

1100 (6) 1010 (10) 0110 (15)1001 (14) 0101 (21) 0011 (35)

1000 (2) 0100 (3) 0010 (5) 0001 (7)

0000 (1)

Figure 1. Lattice over ⊗P (G). Each node
shows a set S ∈ P (G) using its bit-vector SB

and the value obtained by multiplying its ele-
ments ⊗S.

The set P (G) induces a lattice over the semi-group
⊗P (G) as shown in Figure 1. In this lattice, the meet
operation (∧) is set intersection over elements of P (G),
which corresponds to the gcd of the corresponding ele-
ments of ⊗P (G). The join operation (∨) is set union (over
P (G)), which corresponds to the least common multiple
(lcm) over ⊗P (G). For example, 1010(10) ∧ 1001(14) =
1000(2), confirming that gcd(10, 14) = 2, and 1010(10) ∨
1001(14) = 1011(70), indicating that lcm(10, 14) = 70.
More formally, we have:

Theorem 2.2 Let ⊗P (G) be a square-free semi-group with
prime generator G, and let X,Y ∈ ⊗P (G) be two dis-
tinct elements, then gcd(X,Y ) = ⊗(SX ∩ SY ), and
lcm(X,Y ) = ⊗(SX ∪ SY ), where X = ⊗SX and Y =
⊗SY , and SX , SY ∈ P (G) are the prime factors of X and
Y , respectively.

Define the factor-cardinality, denoted ‖X‖G, for any X ∈
⊗P (G), as the number of prime factors from G in the fac-
torization of X . Let X = ⊗SX , with SX ⊆ G. Then
‖X‖G = |SX |. For example, ‖21‖G = {3, 7} = 2. Note
that ‖{1}‖G = 0, since 1 has no prime factors in G.

Corollary 2.3 Let ⊗P (G) be a square-free semi-group
with prime generator G, and let X,Y ∈ ⊗P (G) be two
distinct elements, then gcd(X,Y ) ∈ ⊗P (G).

Prime Block Encoding: Let T = [1 : N ] = {1, 2, . . . , N}
be the set of the first N positive integers, let G be a base
set of prime numbers sorted in increasing order. Without
loss of generality assume that N is a multiple of |G|, i,.e.,
N = m · |G|. Let B ∈ {0, 1}N be a bit-vector of length N .
Then B can partitioned into m = N

|G| consecutive blocks,
where each block Bi = B [(i − 1) · |G| + 1 : i · |G|], with
1 ≤ i ≤ m. In fact, each Bi ∈ {0, 1}|G|, is the indicator
bit-vector SB representing some subset S ⊆ G. Let Bi[j]
denote the j-th bit in Bi, and let G[j] denote the j-th prime
in G. Define the value of Bi with respect to G as follows,
ν(Bi, G) = ⊗{G[j]Bi[j]}. For example if Bi = 1001, and
G = {2, 3, 5, 7}, then ν(Bi, G) = 21·30·50·71 = 2·7 = 14.
Note also that if Bi = 0000 then ν(Bi, G) = 1.

Define ν(B,G) = {ν(Bi, G) : 1 ≤ i ≤ m}, as
the prime block encoding of B with respect to the base
prime set G. It should be clear that each ν(Bi, G) ∈
⊗P (G). Note that when there is no ambiguity, we write
ν(Bi, G) as ν(Bi), and ν(B,G) as ν(B). As an exam-
ple, let T = {1, 2, ....., 12}, G = {2, 3, 5, 7}, and B =
100111100100. Then there are m = 12/4 = 3 blocks,
B1 = 1001, B2 = 1110 and B3 = 0100. We have
ν(B1) = ⊗SG(B1) = ⊗{2, 7} = 2 · 7 = 14, and the
prime block encoding of B is given as ν(B) = {14, 30, 3}.
We also define the inverse operation ν−1({14, 30, 3}) =
ν−1(14)ν−1(30)ν−1(3) = 100111100100 = B. Also a
bit-vector of all zeros (of any length) is denoted as 0, and
its corresponding value/encoding is denoted as 1. For ex-
ample, if C = 00000000, then we also write C = 0, and
ν(C) = {1, 1} = 1.

Let G be the base prime set, and let A = A1A2 · · ·Am,
and B = B1B2 · · ·Bm be any two bit-vectors in {0, 1}N ,
with N = m · |G|, and Ai, Bi ∈ {0, 1}|G|. De-
fine gcd(ν(A), ν(B)) = {gcd(ν(Ai), ν(Bi)) : 1 ≤



i ≤ m}. For example, for ν(B) = {14, 30, 5}
and ν(A) = {2, 210, 2}, we have gcd(ν(B), ν(A)) =
{gcd(14, 2), gcd(30, 210), gcd(5, 2)} = {2, 30, 1}.

Let A = A1A2 · · ·Am be a bit-vector of length N ,
where each Ai is a |G| length bit-vector. Let fA =
arg minj{A[j] = 1} be the position of the first ‘1’ in A,
across all blocks Ai. Define a masking operator (A)� as
follows:

(A)�[j] =
{

0, j ≤ fA
1, j > fA

In other words, (A)� is the bit vector obtained by set-
ting A[fA] = 0 and setting A[j] = 1 for all j >
fA. For example, if A = 001001100100, then fA =
3, and (A)� = 000111111111. Likewise, we can
define the masking operator for a prime block encod-
ing as follows: (ν(A))� = ν((A)�). For example,
(ν(A))� = ν((001001100100)�) = ν(000111111111) =
ν(0001) ν(1111) ν(1111) = {7, 210, 210}. In other
words, ({5, 15, 3})� = {7, 210, 210}, since ν(A) =
ν(001001100100) = ν(0010) ν(0110) ν(0100) =
{5, 15, 3}.

3 The PRISM Algorithm
Sequence mining involves a combinatorial enumeration

or search for frequent sequences over the sequence partial
order. There are three key aspects of PRISM that need
elucidation: i) the search space traversal strategy, ii) the
data structures used to represent the database and interme-
diate candidate information, and iii) how support counting
is done for candidates. PRISM uses the prime block encod-
ing approach to represent candidates sequences, and uses
join operations over the prime blocks to determine the fre-
quency for each candidate.
Search Space: The partial order induced by the subse-
quence relation is typically represented as a search tree, de-
fined recursively as follows: The root of the tree is at level
zero and is labeled with the null sequence ∅. A node la-
beled with sequence S at level k, i.e., a k-sequence, is re-
peatedly extended by adding one item from I to generate a
child node at the next level (k +1), i.e., a (k +1)-sequence.
There are two ways to extend a sequence by an item: se-
quence extension and itemset extension. In a sequence ex-
tension, the item is appended to the sequential pattern as
a new itemset. In an itemset extension, the item is added
to the last itemset in the pattern, provided that the item is
lexicographically greater than all items in the last itemset.
Thus, a sequence-extension always increases the size of the
sequence, whereas, an itemset-extension does not. For ex-
ample, if we have a node S = ab → a and an item b for
extending S, then ab → a → b is a sequence-extension,
and ab → ab is an itemset extension.
Prime Block Encoding: Consider the example database
in Figure 2(a), consisting of 5 sequences over the items
I = {a, b, c}. Let G = {2, 3, 5, 7} be the base square-
free prime generator set. Let’s see how PRISM constructs
the prime block encoding for a single item a. In the first
step, PRISM constructs the prime encoding of the positions
within each sequence. For example, since a occurs in po-
sitions 1,4, and 6 (assuming positions/indexes starting at
1) in sequence 1, we obtain the bit-encoding of a’s occur-

sid database sequence
1 ab → b → b → ab → b → a

2 ab → b → b

3 b → ab

4 b → b → b

5 ab → ab → ab → a → bc
(a)

sid Bit-encoded pos Prime-encoded pos
1 1001,0100 {14, 3}
2 1000 {2}
3 0100 {3}
4 0000 {1}
5 1111,0000 {210,1}

(b)

Bit-encoded sid Prime-encoded sid
1110,1000 {30,2}

(c)

Item Sequence Blocks Position Blocks
a {30,2} {14, 3}, {2}, {3}, {1}, {210,1}
b {210,2} {210, 2}, {30}, {6}, {30}, {30,2}
c {1,2} {1, 1}, {1}, {1}, {1}, {1,2}

(d)

a

sequence blocks

position offsets

30

1 3 4

2

5

position blocks 14 3 2 3 210

b

210

1 3 4 5

2

6

210 2 30 6 30 30 2

c

1

 

2

1

2

(e)

Figure 2. Example of Prime Block Encoding:
(a) Example Database. (b) Position Encoding
for a. (c) Sequence Encoding for a. (d) Full
Prime Blocks for a, b and c. (e) Prime Block
Encoding for a, b and c.

rences: 100101. PRISM next pads this bit-vector so that
it is a multiple of |G| = 4, to obtain A = 10010100
(note: bold bits denote padding). Next we compute ν(A) =
ν(1001)ν(0100) = {14, 3}. The position encoding for a
over all the sequences is shown in Figure 2 (b).

PRISM next computes the prime encoding for the se-
quence ids. Since a occurs in all sequences, except for 4,
we can represent a’s sequence occurrences as a bit-vector
A = 11101000 after padding. This yields the prime encod-
ing shown in Figure 2(c), since ν(A) = ν(1110)ν(1000) =
{30, 2}. The full prime encoding for item a consists of all
the sequence and position blocks, as shown in Figure 2(d).
A block Ai = 0000 = 0, with ν(Ai) = {1} = 1, is also
called an empty block. Note that the full encoding retains
all the empty position blocks, for example, a does not occur
in the second position block in sequence 5, and thus its bit-
vector is 0000, and the prime code is {1}. In general, since
items are expected to be sparse, there may be many blocks
within a sequence where an item does not appear.

To eliminate those empty blocks, PRISM retains only the
non-empty blocks in the prime encoding. To do this it needs



to keep an index with each sequence block to indicate which
non-empty position blocks correspond to a given sequence
block. Figure 2 (e) shows the actual (compact) prime block
encoding for item a. The first sequence block is 30, with
factor-cardinality ‖30‖G = 3, which means that there are
3 valid (i.e., with non-empty position blocks) sequences in
this block, and for each of these, we store the offsets into
the position blocks. For example, the offset of sequence 1
is 1, with the first two position blocks corresponding to this
sequence. Thus the offset for sequence 2 is 3, with only
one position block, and finally, the offset of sequence 3 is
4. Note that the sequences which represent the sequence
block 30, can be found directly from the corresponding bit-
vector ν−1(30) = 1110, which indicates that sequence 4
is not valid. The second sequence block for a is 2 (corre-
sponding to ν−1(2) = 1000), indicating that only sequence
5 is valid, and its position blocks begin as position 5. The
benefit of this sparse representation becomes clear when we
consider the prime encoding for c. Its full encoding (see
Figure 2(d)) contains a lot of redundant information, which
has been eliminated in the compact prime block encoding
(see Figure 2(e)).

It is worth noting that the support of a sequence S can be
directly determined from its sequence blocks in the prime
block encoding. Let E(S) = (SS ,PS) denote the prime
block encoding for sequence S, where SS is the set of
all encoded sequence blocks, and PS is the set of all en-
coded position blocks for S. The support of a sequence S
with prime block encoding E(S) = (SS ,PS) is given as
sup(S) =

∑
vi∈SS

‖vi‖G. For example, for S = a, since
Sa = {30, 2}, we have sup(a) = ‖30‖G +‖2‖G = 3+1 =
4. Given a list of full or compact position blocks PS for a
sequence S, we use the notation Pi

S to denote those posi-
tions blocks, which come from sequence id i. For example,
in P1

a = {14, 3}. In the full encoding P5
a = {210, 1}, but

in the compact encoding P5
a = {210} (see Figure 2(d)-(e)).

Support Counting via Prime Block Joins: The frequent
sequence enumeration process starts with the root of the
search tree as the prefix node P = ∅, and PRISM assumes
that initially we know the prime block encodings for all sin-
gle items. PRISM then recursively extends each node in the
search tree, computes the support via the prime block joins,
and retains new candidates (or extensions) only if they are
frequent. The search is essentially depth-first, the main dif-
ference being that for any node S, all of its extensions are
evaluated before the depth-first recursive call. When there
are no new frequent extensions found, the search stops. To
complete the description, we now detail the prime block
join operations. We will illustrate the prime block item-
set and sequence joins using the prime encodings E(a) and
E(b), for items a and b, respectively, as shown in Fig-
ure 2(e).
Itemset Extensions: Let’s first consider how to obtain the
prime block encoding for the itemset extension E(ab),
which is illustrated in Figure 3(a). Note that the sequence
blocks Sa = {30, 2} and Sb = {210, 2} contain all in-
formation about the relevant sequence ids where a and b
occur, respectively. To find the sequence block for item-
set extension ab, we simply have to compute the gcd for
the corresponding elements from the two sequence blocks,
namely gcd(30, 210) = 30 (which corresponds to the bit-

gcd(30, 210) = 30

1 1 1 0

a

b

gcd(a,b)

14

210

14

3

2

1

2

30

2

3

6

3

1001 1000 0100

ab

30

1 2 3

2

4

gcd(2, 2) = 2

1 0 0 0

210

30

30

1110

14 2 3 30

(a) Itemset Extension

gcd(30, 210) = 30

1 1 1 0

mask(a)

b

gcd

105

210

105

210

2

2

105

30

15

35

6

1

0111 1000 0110

a->b

6

1 3

2

4

gcd(2, 2) = 2

1 0 0 0

105

30

15

210

2

2

0110 1000

105 2 15 15 2

(b) Sequence Extension
Figure 3. Extensions via Prime Block Joins

vector 1110), and gcd(2, 2) = 2 (which corresponds to bit-
vector 1000). We say that a sequence id i ∈ gcd(Sa,Sb)
if the i-th bit is set in the bit vector ν−1(gcd(Sa,Sb)).
Since ν−1(gcd(Sa,Sb)) = ν−1({30, 2}, {210, 2}) =
ν−1(30, 2) = 11101000, we find that sids 1, 2, 3 and 5
are the ones that contain occurrences of both a and b.

All that remains to be done is to determine, by looking
at the position blocks, if a and b, in fact, occur simultane-
ously at some position in those sequences. Let’s consider
each sequence separately. Looking at sequence 1, we find
in Figure 2(e) that its positions blocks are P1

a = {14, 3}
in E(a) and P1

b = {210, 2} in E(b). To find where a
and b co-occur in sequence 1, all we have to do is com-
pute the gcd of these position blocks to obtain gcb(a, b) =
{gcd(14, 210), gcd(3, 2)} = {14, 1}, which indicates that
ab only occur at positions 1 and 4 in sequence 1 (since
ν−1(14) = 1001). A quick look at Figure 2(a) confirms
that this is indeed correct. If we continue in like manner
for the remaining sequences (2, 3 and 5), we obtain the re-
sults shown in Figure 3(a), which also shows the final prime
block encoding E(ab). Note that there is at least one non-
empty block for each of the sequences, even though for se-
quence 1, the second position block is discarded in the final
prime encoding. Thus sup(ab) = ‖30‖G+‖2‖G = 3+1 =
4.
Sequence Extensions: Let’s consider how to obtain the
prime block encoding for the sequence extension E(a → b),
which is illustrated in Figure 3(b). The first step involves
computing the gcd for the sequence blocks as before, which
yields sequences 1, 2, 3 and 5, as those which may poten-
tially contain the sequence a → b.

For sequence 1, we have the positions blocks
P1

a = {14, 3} for a and P1
b = {210, 2} for

b. The key difference with the itemset extension is
the way in which we process each sequence. In-
stead of computing gcd({14, 3}, {210, 2}), we compute
gcd(({14, 3})�, {210, 2}) = gcd({105, 210}, {210, 2}) =
{gcd(105, 210), gcd(210, 2)} = {105, 2}. Note that
ν−1({105, 2}) = 01111000, which precisely indicate those
positions in sequence 1, where b occurs after an a. Thus,
sequence joins always keep track of the positions of the
last item in the sequence. Proceeding in like manner for
sequences 2,3, and 5, we obtain the results shown in Fig-
ure 3(b). Note that for sequence 3, even though it contains
both items a and b, b never occurs after an a, and thus se-
quence 3 does not contribute to the support of a → b. This is
also confirmed by computing gcd((3)�, 6) = gcd(35, 6) =



1, which leads to an empty block (ν−1(1) = 0000). Thus
in the compact prime encoding of E(a → b), sequence
3 drops out. The remaining sequences 1, 2, and 5, con-
tribute at least one non-empty block, which yields Sa→b =
ν(11001000) = {6, 2}, as shown in Figure 3(b), with sup-
port sup(a → b) = ‖6‖G + ‖2‖G = 2 + 1 = 3.

Optimizations: Since computing the gcd is one of main
operations in PRISM, we use a pre-computed table called
GCD to facilitate rapid gcd computations. Note that in our
examples above, we used only the first four primes as the
base generator set G. However, in our actual implemen-
tation, we used |G| = 8 primes as the generator set, i.e.,
G = {2, 3, 5, 7, 11, 13, 17, 19}. Thus each block size is
now 8 instead of 4. Note that with the new G, the largest
element in ⊗P (G) is ⊗G = 9699690. In total there are
| ⊗ P (G)| = 256 possible elements in semi-group ⊗P (G).

In a naive implementation, the GCD lookup table
can be stored as a two-dimensional array with cardinality
9699690× 9699690, where GCD(i, j) = gcd(i, j) for any
two integers i, j ∈ [1 : 9699690]. This is clearly grossly
inefficient, since there are in fact only 256 distinct (square-
free) products in ⊗P (G), and we thus really need a table
of size 256 × 256 to store all the gcd values. We achieve
this by representing each element in ⊗P (G) by its rank, as
opposed to its value.

Let S ∈ P (G), and let SB its |G|-length indicator
bit-vector, whose i-th bit is ‘1’ iff the i-element of G
is in S. Then the rank of ⊗S is equal to the decimal
value of SB (with the left-most bit being the least signif-
icant bit). In other words rank(⊗S) = decimal(SB).
For example, the rank(1) = decimal(00000000) = 0,
rank(13) = decimal(00000100) = 32, rank(35) =
decimal(00110000) = 12, and rank(9699690) =
decimal(11111111) = 255. Let S, T ∈ P (G), and let
SB, TB be their indicator bit-vectors with respect to gener-
ator set G. Then rank(gcd(⊗S,⊗T )) = decimal(SB ∧
TB). Consider for example, gcd(35, 6) = 1. We have
rank(gcd(35, 6)) = decimal(00110000 ∧ 11000000) =
decimal(00000000) = 0, which matches the computation
rank(gcd(35, 6)) = rank(1) = 0. Instead of using di-
rect values, all gcd computations are performed in terms
of the ranks of the corresponding elements. Thus each
cell in the GCD table stores: GCD(rank(i), rank(j)) =
rank(gcd(i, j)), where i, j ∈ ⊗P (G). This brings down
the storage requirements of the GCD table to just 256 ×
256 = 65536 bytes, since each rank requires only one byte
of memory (since rank ∈ [0 : 255]).

Once the final sequence blocks are computed for af-
ter a join operation, we need to determine the actual sup-
port, by adding the factor cardinalities for each sequence
block. To speed up this support determination, PRISM
maintains a one-dimensional look-up array called CARD
to store the factor-cardinality for each element in the set
⊗P (G). That is we store CARD(rank(x)) = ‖x‖G for
all x ∈ ⊗P (G). For example, since ‖35‖G = 2, we have
CARD(rank(35)) = CARD(12) = 2.

Furthermore, in sequence block joins, we need to com-
pute the masking operation for each position block. For
this PRISM maintains another one dimensional array called
MASK, where MASK(rank(x)) = rank((x)�) for
each x ∈ ⊗P (G). For example MASK(rank(2)) =

rank((2)�) = rank(4849845) = 254. Finally, as an
optimization for fast joins, once we determine gcdXY or
gcdX→Y in the prime itemset/sequence block joins, if the
number of supporting sequences is less than minsup, we can
stop further processing of position blocks, since the result-
ing extensions cannot be frequent in this case.

4 Experiments
In this section we study the performance of PRISM by

varying different database parameters and by comparing
it with other state-of-the-art sequence mining algorithms
like SPADE [10], PrefixSpan [6] and SPAM [2]. The
codes/executables for these methods were obtained from
their authors. All experiments were performed on a lap-
top with 2.4GHz Intel Celeron processor, and with 512MB
memory, running Linux.
Synthetic and Real Datasets: We used several synthetic
datasets, generated using the approach outlined in [1]. The
datasets are generated using the following process. First NI
maximal itemsets of average size I are generated by choos-
ing from N items. Then NS maximal sequences of average
size S are created by assigning itemsets from NI to each
sequence. Next a customer (or input sequence) of aver-
age C transactions (or itemsets) is created, and sequences
in NS are assigned to different customer elements, respect-
ing the average transaction size of T. The generation stops
when D input-sequences have been generated. For example,
the dataset C20T50S20I10N1kD100k, means that it has
D=100k sequences, with C=20 average transactions, T=50
average transaction size, chosen from a pool with average
sequence size S=20 and average transaction size I=10, with
N=1k different items. The default itemset and sequence
pool sizes are always set to NS = 5000 and NI = 25000,
respectively.

We also compared the methods on two real datasets
taken from [9]. Gazelle was part of the KDD Cup
2000 challenge dataset. It contains log data from a (de-
funct) web retailer. It has 59602 sequences, with an av-
erage length of 2.5, length range of [1, 267], and 497
distinct items. The Protein dataset contains 116142
proteins sequences downloaded from the Entrez database
at NCBI/NIH. The average sequence length is 482, with
length range of [400,600], and 24 distinct items (the dif-
ferent amino acids).
Performance Comparison: Figure 4 shows the per-
formance comparison of the four algorithms, namely,
SPAM [2], PrefixSpan [6], SPADE [10] and PRISM, on
different synthetic and real datasets, with varying mini-
mum support. As noted earlier, for PRISM we used the
first 8 primes as the base prime generator set G. Fig-
ure 4 (a)-(b) show (small) datasets where all four meth-
ods can run for at least some support values. For these
datasets, we find that PRISM has the best overall perfor-
mance. For the support values where SPAM can run, it
is generally in the second spot (in fact, it is the fastest on
C10T20S4I4N0.1kD10k). However, SPAM fails to run
for lower support values. PRISM outperforms SPADE by
about 4 times, and PrefixSpan by over an order of magni-
tude.

Figure 4 (c)-(d) show larger datasets (with D=100k se-
quences). On these SPAM could not run on our laptop, and
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Figure 5. Scalability & Memory Consumption

thus is not shown. PRISM again outperforms PrefixSpan
and SPADE, by up to an order of magnitude. Finally, Fig-
ure 4 (e)-(f) show the performance comparison on the real
datasets, Gazelle and Protein. SPAM failed to run
on both these datasets on our laptop, and PrefixSpan did not
run on Protein. On Gazelle PRISM is an order of mag-
nitude faster than PrefixSpan, but is comparable to SPADE.
On Protein PRISM outperforms SPADE by an order of
magnitude (for lower support).

Based on these results on diverse datasets, we can ob-
serve some general trends. Across the board, our new
approach, PRISM, is the fastest (with a few exceptions),
and runs for lower support values than competing methods.
SPAM generally works only for smaller datasets due to its
very high memory consumption (see below); when it runs,

SPAM is generally the second best. SPADE and PrefixSpan
do not suffer from the same problems as SPAM, but they
are much slower than PRISM, or they fail to run for lower
support values, when the database parameters are large.
Scalability: Figure 5(a) shows the scalability of the differ-
ent methods when we vary the number of sequences 10k to
100k (using as base values: C=20, T=20, S=20, I=10, and
N=1k). Since SPAM failed to run on these larger datasets,
we could not report on its scalability. We find that the ef-
fect of increasing the number of sequences is approximately
linear.
Memory Usage: Figure 5(b) shows the memory consump-
tion of the four methods on a sample of the datasets. The
figures plot the peak memory consumption during execution
(measured using the memusage command in Linux). Fig-
ure 5(b) quickly demonstrates why SPAM is not able to run
on all except very small datasets. We find that its memory
consumption is well beyond the physical memory available
(512MB), and thus the program aborts when the operating
system runs out of memory. We can also note that SPADE
generally has a 3-5 times higher memory consumption than
PrefixSpan and PRISM. The latter two have comparable and
very low memory requirements.
Conclusion: Based on the extensive experimental compar-
ison with popular sequence mining methods, we conclude
that, across the board, PRISM is one of the most efficient
methods for frequent sequence mining. It outperforms ex-
isting methods by an order of magnitude or more, and has
a very low memory footprint. It also has good scalability
with respect to a number of database parameters. Future
work will consider the tasks of mining all the closed and
maximal frequent sequences, as well as the task of pushing
constraints within the mining process to make the method
suitable for domain-specific sequence mining tasks. For
example, allowing approximate matches, allowing substi-
tution costs, and so on.
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